Take our Survey

Reference: Albertyn J, et al. (1994) Characterization of the osmotic-stress response in Saccharomyces cerevisiae: osmotic stress and glucose repression regulate glycerol-3-phosphate dehydrogenase independently. Curr Genet 25(1):12-8

Reference Help

Abstract


Micro-organisms have developed systems to adapt to sudden changes in the environment. Here we describe the response of the yeast Saccharomyces cerevisiae to osmotic stress. A drop in the water activity (aw) of the medium following the addition of NaCl led to an immediate shrinkage of the cells. During the 2 h following the osmotic shock the cells partially restored their cell volume. This process depended on active protein synthesis. During the recovery period the cells accumulated glycerol intracellularly as a compatible solute and very little glycerol was leaking out of the cell. We have investigated in more detail the enzymes of glycerol metabolism and found that only the cytoplasmic glycerol-3-phosphate dehydrogenase was strongly induced. The level of induction was dependent on the yeast strain used and the degree of osmotic stress. The synthesis of cytoplasmic glycerol-3-phosphate dehydrogenase is also regulated by glucose repression. Using mutants defective in glucose repression (hxk2 delta), or derepression (snf1 delta), and with invertase as a marker enzyme, we show that glucose repression and the osmotic-stress response system regulate glycerol-3-phosphate dehydrogenase synthesis independently. We infer that specific control mechanisms sense the osmotic situation of the cell and induce responses such as the production and retention of glycerol.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Albertyn J, Hohmann S, Prior BA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference