Reference: Frugier M, et al. (1994) Identity switches between tRNAs aminoacylated by class I glutaminyl- and class II aspartyl-tRNA synthetases. Biochemistry 33(33):9912-21

Reference Help

Abstract

High-resolution X-ray structures for the tRNA/aminoacyl-tRNA synthetase complexes between Escherichia coli tRNAGln/GlnRS and yeast tRNAAsp/AspRS have been determined. Positive identity nucleotides that direct aminoacylation specificity have been defined in both cases; E. coli tRNAGln identity is governed by 10 elements scattered in the tRNA structure, while specific aminoacylation of yeast tRNAAsp is dependent on 5 positions. Both identity sets are partially overlapping and share 3 nucleotides. Interestingly, the two enzymes belong to two different classes described for aminoacyl-tRNA synthetases. The class I glutaminyl-tRNA synthetase and the class II aspartyl-tRNA synthetase recognize their cognate tRNA from opposite sides. Mutants derived from glutamine and aspartate tRNAs have been created by progressively introducing identity elements from one tRNA into the other one. Glutaminylation and aspartylation assays of the transplanted tRNAs show that identity nucleotides from a tRNA originally aminoacylated by a synthetase from one class are still recognized if they are presented to the enzyme in a structural framework corresponding to a tRNA aminoacylated by a synthetase belonging to the other class. The simple transplantation of the glutamine identity set into tRNAAsp is sufficient to obtain glutaminylatable tRNA, but additional subtle features seem to be important for the complete conversion of tRNAGln in an aspartylatable substrate. This study defines C38 in yeast tRNAAsp as a new identity nucleotide for aspartylation. We show also in this paper that, during the complex formation, aminoacyl-tRNA synthetases are at least partially responsible for conformational changes which involve structural constraints in tRNA molecules.

Reference Type
Journal Article
Authors
Frugier M, Soll D, Giege R, Florentz C
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference