Take our Survey

Reference: Wedekind JE, et al. (1994) Chelation of serine 39 to Mg2+ latches a gate at the active site of enolase: structure of the bis(Mg2+) complex of yeast enolase and the intermediate analog phosphonoacetohydroxamate at 2.1-A resolution. Biochemistry 33(31):9333-42

Reference Help

Abstract


The structure of a new crystal form of enolase from bakers' yeast has been solved to 2.1-A resolution. Crystals were grown from poly(ethylene glycol) and KCl at pH 8.2 in the presence of Mg2+ and a reaction intermediate analog, phosphonoacetohydroxamate (PhAH). Crystals belong to space group C2; have unit cell dimensions a = 123.5 A, b = 73.9 A, and c = 94.8 A with beta = 93.3 degrees; and contain one dimer per asymmetric unit. The structure was solved by molecular replacement from the X-ray coordinates of apoenolase [Stec, B., & Lebioda, L. (1990) J. Mol. Biol. 211, 235-248]. Both essential divalent metal ions are observed to be complexed with the inhibitor. The two Mg2+ ions are 4.05 A apart and are bridged by a mu-oxyl ligand from the carbonyl moiety of PhAH. The "high-affinity" Mg2+ coordinates to the carboxylate side chains of Asp 246, Glu 295, and Asp 320, one water molecule, and the hydroxamate and carbonyl oxygens of PhAH. The second Mg2+ coordinates to a phosphonyl oxygen, two water molecules, and the mu-bridge carbonyl oxygen of PhAH. Coordination schemes with respect to PhAH and water ligands are fully consistent with those of the Mn2+ complexes determined spectroscopically [Poyner, R.R., & Reed, G. H. (1992) Biochemistry 31, 7166-7173]. Remaining ligands for the second Mg2+ are the carbonyl oxygen and gamma-oxygen of Ser 39. Chelation of this Ser residue to Mg2+ effectively "latches" a flexible loop extending from Gly 37 through His 43 and closes off the entrance to the active site. The position of the second Mg2+ in the active site provides new insight into the stereochemistry of substrate binding.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Wedekind JE, Poyner RR, Reed GH, Rayment I
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference