Take our Survey

Reference: Chae HZ, et al. (1994) Thioredoxin-dependent peroxide reductase from yeast. J Biol Chem 269(44):27670-8

Reference Help

Abstract


A 25-kDa antioxidant enzyme that provides protection against oxidation systems capable of generating reactive oxygen and sulfur species has previously been identified. The nature of the oxidant eliminated by, and the physiological source of reducing equivalents for, this enzyme, however, were not known. The 25-kDa enzyme is now shown to be a peroxidase that reduces H2O2 and alkyl hydroperoxides with the use of hydrogens provided by thioredoxin, thioredoxin reductase, and NADPH. This protein is the first peroxidase to be identified that uses thioredoxin as the immediate hydrogen donor and is thus named thioredoxin peroxidase (TPx). TPx exists as a dimer of identical 25-kDa subunits that contain 2 cysteine residues, Cys47 and Cys170. Cys47-SH appears to be the site of oxidation by peroxides, and the oxidized Cys47 probably reacts with Cys170-SH of the other subunit to form an intermolecular disulfide. Mutant TPx proteins lacking either Cys47 or Cys170, therefore, do not exhibit thioredoxin-coupled peroxidase activity. The TPx disulfide is specifically reduced by thioredoxin, but can also be reduced (less effectively) by a small molecular size thiol. The Saccharomyces cerevisiae thioredoxin reductase gene was also cloned and sequenced, and the deduced amino sequence was shown to be 51% identical with that of the Escherichia coli enzyme.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Chae HZ, Chung SJ, Rhee SG
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference