Take our Survey

Reference: Schmitt ME and Clayton DA (1994) Characterization of a unique protein component of yeast RNase MRP: an RNA-binding protein with a zinc-cluster domain. Genes Dev 8(21):2617-28

Reference Help

Abstract

RNase MRP is a ribonucleoprotein endoribonuclease that has been shown to cleave mitochondrial primer RNA sequences from a variety of sources. Most of the RNase MRP activity is found in the nucleus where it plays a role in the processing of 5.8S rRNA. A temperature-conditional point mutation in the yeast RNA component of the enzyme has been identified. This mutation results in a loss of normal rRNA processing at the nonpermissive temperature while cellular levels of the RNA component of RNase MRP remain stable. High-copy suppressor analysis of this point mutation was employed to identify interacting proteins. A unique suppressor, termed SNM1 (suppressor of nuclear mitochondrial endoribonuclease 1), was identified repeatedly. The SNM1 gene was localized to the right arm of chromosome IV, directly adjacent to the SNF1 gene, and it contains an open reading frame encoding a protein of 198 amino acids. The protein contains a leucine zipper motif, a zinc-cluster motif, and a serine/lysine-rich tail. The gene was found to be essential for viability in a yeast cell, consistent with it being a protein component of the RNase MRP ribonucleoprotein complex. Recombinant SNM1 protein binds RNA in both gel retardation and Northwestern assays. Antibodies raised against bacterially expressed proteins identified four separate species in yeast whole cell extracts. Antibodies directed against the SNM1 protein immunoprecipitated RNase MRP RNA from whole-cell extracts without precipitating the structurally and functionally related RNase P RNA. We propose that the SNM1 protein is an essential and specific component of the RNase MRP ribonucleoprotein complex, the first unique protein of this complex to be identified.

Reference Type
Journal Article
Authors
Schmitt ME, Clayton DA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference