Reference: Waldrop GL, et al. (1994) Three-dimensional structure of the biotin carboxylase subunit of acetyl-CoA carboxylase. Biochemistry 33(34):10249-56

Reference Help

Abstract


Acetyl-CoA carboxylase is found in all animals, plants, and bacteria and catalyzes the first committed step in fatty acid synthesis. It is a multicomponent enzyme containing a biotin carboxylase activity, a biotin carboxyl carrier protein, and a carboxyltransferase functionality. Here we report the X-ray structure of the biotin carboxylase component from Escherichia coli determined to 2.4-A resolution. The structure was solved by a combination of multiple isomorphous replacement and electron density modification procedures. The overall fold of the molecule may be described in terms of three structural domains. The N-terminal region, formed by Met 1-Ile 103, adopts a dinucleotide binding motif with five strands of parallel beta-sheet flanked on either side by alpha-helices. The "B-domain" extends from the main body of the subunit where it folds into two alpha-helical regions and three strands of beta-sheet. Following the excursion into the B-domain, the polypeptide chain folds back into the body of the protein where it forms an eight-stranded antiparallel beta-sheet. In addition to this major secondary structural element, the C-terminal domain also contains a smaller three-stranded antiparallel beta-sheet and seven alpha-helices. The active site of the enzyme has been identified tentatively by a difference Fourier map calculated between X-ray data from the native crystals and from crystals soaked in a Ag+/biotin complex. Those amino acid residues believed to form part of the active site pocket include His 209-Glu 211, His 236-Glu 241, Glu 276, Ile 287-Glu 296, and Arg 338.2+ represents the first X-ray model of a biotin-dependent carboxylase.

Reference Type
Journal Article
Authors
Waldrop GL, Rayment I, Holden HM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference