Reference: Woods A, et al. (1994) Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo. J Biol Chem 269(30):19509-15

Reference Help

Abstract

The product of the SNF1 gene is a protein kinase whose activity is essential for transcriptional activation of glucose repressed genes in Saccharomyces cerevisiae. We have cloned a mammalian AMP-activated protein kinase (AMPK) that is 46% identical to the deduced amino acid sequence of SNF1 (Carling, D., Aguan, K., Woods, A., Verhoeven, A.J.M., Beri, R., Brennan, C.H., Sidebottom, C., Davison, M.D., and Scott, J. (1994) J. Biol. Chem. 269, 11442-11448). Mammalian AMPK plays a major role in the control of lipid metabolism and phosphorylating, thereby inactivating both acetyl-CoA carboxylase and 3-hydroxy-3-methylglutaryl-CoA reductase, key regulatory enzymes in the synthesis of fatty acids and cholesterol, respectively. We present evidence indicating that, in common with its mammalian homologue, SNF1 forms part of a protein kinase cascade. SNF1 is inactivated in vitro by treatment with protein phosphatase 2A and can be reactivated using a partially purified preparation of mammalian AMPK kinase. SNF1 undergoes a time-dependent increase in activity during growth in glucose-derepressing conditions, providing the first evidence that SNF1 activity is regulated by the level of available glucose. In wild-type yeast, but not in a snf1 deletion mutant, acetyl-CoA carboxylase shows a reciprocal change in activity compared with SNF1 under glucose derepressing conditions, indicating that SNF1 regulates acetyl-CoA carboxylase in vivo. These results suggest that, in addition to their structural similarity, the role of SNF1 and AMPK in the regulation of fatty acid synthesis has been highly conserved throughout evolution.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S. | Comparative Study
Authors
Woods A, Munday MR, Scott J, Yang X, Carlson M, Carling D
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference