Reference: Price N and Proud C (1994) The guanine nucleotide-exchange factor, eIF-2B. Biochimie 76(8):748-60

Reference Help

Abstract

Eukaryotic initiation factor eIF-2B catalyses the exchange of guanine nucleotides on another translation initiation factor, eIF-2, which itself mediates the binding of the initiator Met-tRNA to the 40S ribosomal subunit during translation initiation. eIF-2B promotes the release of GDP from inactive [eIF-2.GDP] complexes, thus allowing formation of the active [eIF-2.GTP] species which subsequently binds the Met-tRNA. This guanine nucleotide-exchange step, and thus eIF-2B activity, are known to be an important control point for translation initiation. The activity of eIF-2B can be modulated in several ways. The best characterised of these involves the phosphorylation of the alpha-subunit of eIF-2 by specific protein kinases regulated by particular ligands. Phosphorylation of eIF-2 alpha leads to inhibition of eIF-2B. This mechanism is involved in the control of translation under a variety of conditions, including amino acid deprivation in yeast (Saccharomyces cerevisiae) where it causes translational upregulation of the transcription factor GCN4, and in virus-infected animal cells, where it involves a protein kinase activated by double-stranded RNA. There is now also growing evidence for direct regulation of eIF-2B. This appears likely to involve the phosphorylation of its largest subunit. Under certain circumstances eIF-2B may also be regulated by allosteric mechanisms. eIF-2B is a heteropentamer (subunits termed alpha, beta, gamma, delta and epsilon) and is thus more complex than most other guanine nucleotide-exchange factors. The genes encoding all five subunits have been cloned in yeast (exploiting the GCN4 regulatory system): all but the alpha appear to be essential for eIF-2B activity. However, this subunit may confer sensitivity to eIF-2 alpha phosphorylation. cDNAs encoding the alpha, beta, delta and epsilon subunits have been cloned from mammalian sources. There is substantial homology between the yeast and mammalian sequences. Attention is now directed towards understanding the roles of individual subunits in the function and regulation of eIF-2B.

Reference Type
Journal Article | Review | Review, Tutorial
Authors
Price N, Proud C
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference