Take our Survey

Reference: Rowland P, et al. (1994) The three-dimensional structure of glucose 6-phosphate dehydrogenase from Leuconostoc mesenteroides refined at 2.0 A resolution. Structure 2(11):1073-87

Reference Help

Abstract


BACKGROUND: Glucose 6-phosphate dehydrogenase (G6PD) is the first enzyme of the pentose phosphate pathway. Normally the pathway is synthetic and NADP-dependent, but the Gram-positive bacterium Leuconostoc mesenteroides, which does not have a complete glycolytic pathway, also uses the oxidative enzymes of the pentose phosphate pathway for catabolic reactions, and selects either NAD or NADP depending on the demands for catabolic or anabolic metabolism. RESULTS: The structure of G6PD has been determined and refined to 2.0 A resolution. The enzyme is a dimer, each subunit consisting of two domains. The smaller domain is a classic dinucleotide-binding fold, while the larger one is a new beta+ alpha fold, not previously seen, with a predominantly antiparallel nine-stranded beta-sheet. There are significant structural differences in the coenzyme-binding domains of the two subunits, caused by Pro 149 which is cis in one subunit and trans in the other. CONCLUSIONS: The structure has allowed us to propose the location of the active site and the coenzyme-binding site, and suggests the role of many of the residues conserved between species. We propose that the conserved Arg46 would interact with both the adenine ring and the 2'-phosphate of NADP. Gln47, which is not conserved, may contribute to the change from NADP to dual coenzyme specificity. His178, in a nine-residue peptide conserved for all known sequences, binds a phosphate in the active site pocket. His240 is the most likely candidate for the base to oxidize the 1-hydroxyl group of the glucose 6-phosphate substrate.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Rowland P, Basak AK, Gover S, Levy HR, Adams MJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference