Take our Survey

Reference: Sinha S, et al. (1995) Recombinant rat CBF-C, the third subunit of CBF/NFY, allows formation of a protein-DNA complex with CBF-A and CBF-B and with yeast HAP2 and HAP3. Proc Natl Acad Sci U S A 92(5):1624-8

Reference Help

Abstract


The CCAAT binding factor CBF is a heteromeric transcription factor, which binds to functional CCAAT motifs in many eukaryotic promoters. cDNAs for the A and B subunits of CBF (CBF-A and CBF-B) and for their yeast homologues HAP3 and HAP2 have been previously isolated, but the purified recombinant CBF-A and CBF-B together are unable to bind to CCAAT motifs in DNA. Here we report the isolation of a cDNA coding for rat CBF-C, demonstrate that recombinant CBF-C is required together with CBF-A and CBF-B to form a CBF-DNA complex, and show that CBF-C is present in this protein-DNA complex together with the other two subunits. We further show that CBF-C allows formation of a complex between the purified recombinant yeast HAP2 and HAP3 polypeptides and a CCAAT-containing DNA and is present in this complex, implying the existence of a CBF-C homologue in yeast. We show that CBF-A and CBF-C interact with each other to form a CBF-A-CBF-C complex and that CBF-B does not interact with CBF-A or CBF-C individually but that it associates with the CBF-A-CBF-C complex. Our results indicate that CBF is a unique evolutionarily conserved DNA binding protein.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Sinha S, Maity SN, Lu J, de Crombrugghe B
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference