Take our Survey

Reference: Dean N (1995) Yeast glycosylation mutants are sensitive to aminoglycosides. Proc Natl Acad Sci U S A 92(5):1287-91

Reference Help

Abstract


Aminoglycosides are a therapeutically important class of antibiotics that inhibit bacterial protein synthesis and a number of viral and eukaryotic functions by blocking RNA-protein interactions. Vanadate-resistant Saccharomyces cerevisiae mutants with defects in Golgi-specific glycosylation processes exhibit growth sensitivity to hygromycin B, an aminoglycoside [Ballou, L., Hitzeman, R. A., Lewis, M. S. & Ballou, C. E. (1991) Proc. Natl. Acad. Sci. USA 88, 3209-3212]. Here, evidence is presented that glycosylation is, in and of itself, a key factor mediating aminoglycoside sensitivity in yeast. Examination of mutants with a wide range of glycosylation abnormalities reveals that all are sensitive to aminoglycosides. This effect is specific to aminoglycosides and not merely a consequence of increased permeability of the yeast mutants to drugs. Furthermore, inhibition of glycosylation in wild-type cells leads to a marked increase in their sensitivity to aminoglycosides. These results establish that a defect in glycosylation is sufficient to render yeast cells susceptible to these clinically important drugs. Further, they suggest that a molecule which prevents the uptake or mediates removal of aminoglycosides requires glycosylation for its activity. Perhaps more importantly, this finding on drug sensitivity provides the most powerful screen to date to identify mutants and thereby to isolate genes involved in all aspects of N-linked glycosylation.

Reference Type
Journal Article
Authors
Dean N
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference