Reference: Lees ND, et al. (1995) Cloning of the late genes in the ergosterol biosynthetic pathway of Saccharomyces cerevisiae--a review. Lipids 30(3):221-6

Reference Help

Abstract

Research on the ergosterol biosynthetic pathway in fungi has focused on the identification of the specific sterol structure required for normal membrane structure and function and for completion of the cell cycle. The pathway and its end product are also the targets for a number of antifungal drugs. Identification of essential steps in ergo-sterol biosynthesis could provide new targets for the development of novel therapeutic agents. Nine of the eleven genes in the portion of the pathway committed exclusively to ergosterol biosynthesis have been cloned, and their essentiality for aerobic growth has been determined. The first three genes, ERG9 (squalene synthase), ERG1 (squalene epoxidase), and ERG7 (lanosterol synthase), have been cloned and found to be essential for aerobic viability since their absence would result in the cell being unable to synthesize a sterol molecule. The remaining eight genes encode enzymes which metabolize the first sterol, lanosterol, to ultimately form ergosterol. The two earliest genes, ERG11 (lanosterol demethylase) and ERG24 (C-14 reductase), have been cloned and found to be essential for aerobic growth but are suppressed by mutations in the C-5 desaturase (ERG3) gene and fen1 and fen2 mutations, respectively. The remaining cloned genes, ERG6 (C-24 methylase), ERG2 (D8AE7 isomerase), ERG3 (C-5 desaturase), and ERG4 (C-24(28) reductase), have been found to be nonessential. The remaining genes not yet cloned are the C-4 demethylase and the C-22 desaturase (ERG5).

Reference Type
Journal Article | Review | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Lees ND, Skaggs B, Kirsch DR, Bard M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference