Reference: Wedekind JE, et al. (1995) Octahedral coordination at the high-affinity metal site in enolase: crystallographic analysis of the MgII--enzyme complex from yeast at 1.9 A resolution. Biochemistry 34(13):4325-30

Reference Help

Abstract


The structure of the Mg2+ complex of yeast enolase has been determined from crystals grown in solutions of poly(ethylene glycol) at pH 8.1. Crystals belong to the space group P2(1) and have unit cell dimensions a = 72.5 A, b = 73.2 A, c = 89.1 A, and beta = 104.4 degrees. There is one dimer in the asymmetric unit. The current crystallographic R-factor is 19.0% for all recorded data to 1.9 A resolution. The electron density indicates a hexacoordinate Mg2+ at the high-affinity cation binding site. The octahedral coordination sphere consists of a meridional arrangement of three carboxylate oxygens from the side chains of Asp 246, Asp 320, and Glu 295, and three well-ordered water molecules. Octahedral coordination is the preferred geometry for alkaline earth metal ions in complexes with oxygen donor groups. In previous crystallographic studies of enolase, Zn2+ and Mg2+ complexes at the high-affinity site were reported to exist in trigonal bipyramidal coordination. This geometry was suggested to enhance the electrophilicity of the metal ion and promote rapid ligand exchange [Lebioda, L., & Stec, B. (1989) J. Am. Chem. Soc. 111, 8511-8513]. The octahedral arrangement of carboxylate and water ligands in the MgII-enolase complex determined here is most consistent with reports of the Mn2+ and Mg2+ coordination complexes of mandelate racemase and muconate lactonizing enzyme. These latter enzymes have alpha/beta-barrel folds comparable to enolase.(ABSTRACT TRUNCATED AT 250 WORDS)

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Wedekind JE, Reed GH, Rayment I
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference