Reference: Lamour V, et al. (1995) A human homolog of the S. cerevisiae HIR1 and HIR2 transcriptional repressors cloned from the DiGeorge syndrome critical region. Hum Mol Genet 4(5):791-9

Reference Help

Abstract

The DiGeorge syndrome (DGS) is a developmental disorder affecting derivatives of the third and fourth pharyngeal pouches. DGS patients present an interstitial deletion in one of their two chromosomes 22. Cosmid DAC30 was mapped to the DGS smallest critical region. Iterative cDNA library screening initiated with a DAC30 gene fragment candidate yielded a cDNA contig whose assembled nucleotide sequence is consistent with the widely transcribed, 4.2-4.4 kb long, messengers detected by northern analysis. The deduced protein sequence, 1017 amino acids in length, entirely encompasses the 766 amino acids previously designated as TUPLE1. The completed protein has been renamed HIRA because it contains various features matching those found in HIR1 and HIR2, two repressors of histone gene transcription characterized in the yeast Saccharomyces cerevisiae. Strikingly alike in their N-terminal third, HIRA and HIR1 contain seven copies of the WD repeat, a motif implicated in protein-protein interactions, suggesting that they might define a new subfamily of functionally homologous proteins. The remainder of the human polypeptide highly resembles a corresponding fragment in HIR2. We propose that HIRA, alone, could have a part in mechanisms of transcriptional regulation similar to that played by HIR1 and HIR2 together. The presence of a single copy of the HIRA gene in DGS patients possibly accounts for some of the abnormalities associated with this syndrome.

Reference Type
Journal Article
Authors
Lamour V, Lecluse Y, Desmaze C, Spector M, Bodescot M, Aurias A, Osley MA, Lipinski M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference