Reference: Su LK, et al. (1995) APC binds to the novel protein EB1. Cancer Res 55(14):2972-7

Reference Help

Abstract


Mutations of the APC gene play a critical role in both sporadic and familial forms of colorectal cancer. The vast majority of these mutations result in the loss of the carboxyl terminus of the protein. To further elucidate the function of APC, we searched for cellular proteins that associate with its carboxyl terminus. One million human cDNA clones were screened with the use of the interaction trap two-hybrid system, and 67 clones were found to have a phenotype suggestive of an APC-interacting protein. Nucleotide sequence analysis revealed that 48 of these clones were derived from a single novel named EBI. The association of APC and EB1 proteins was confirmed with in vitro binding assays. mAbs against EB1 were then produced and used to demonstrate the association of APC and EB1 in vivo. The EB1 gene was predicted to encode a 268-amino acid protein without significant homology to proteins with known function. However, searches of nucleotide databases did identify evidence for at least two related human genes and a yeast homologue. This conservation suggests an essential function for EB1 that might provide clues to the mechanism through which APC suppresses colonic neoplasia.

Reference Type
Journal Article
Authors
Su LK, Burrell M, Hill DE, Gyuris J, Brent R, Wiltshire R, Trent J, Vogelstein B, Kinzler KW
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference