Take our Survey

Reference: van Nues RW, et al. (1995) Evolutionarily conserved structural elements are critical for processing of Internal Transcribed Spacer 2 from Saccharomyces cerevisiae precursor ribosomal RNA. J Mol Biol 250(1):24-36

Reference Help

Abstract

Structural features of Internal Transcribed Spacer 2 (ITS2) important for the correct and efficient removal of this spacer from Saccharomyces cerevisiae pre-rRNA were identified by in vivo mutational analysis based upon phylogenetic comparison with its counterparts from four different yeast species. Compatibility between ITS2 structure and the S. cerevisiae processing machinery was found to have been maintained over only a short evolutionary distance, in contrast to the situation for ITS1. Nevertheless, cis-acting elements required for correct and efficient processing are confined predominantly to those regions of the spacer that show the highest degree of evolutionary conservation. Mutation or deletion of each of these regions severely reduced production of mature 26 S, but not 17 S rRNA, mainly by impeding processing of the 29 SB precursor. In some cases, however, conversion of 29SA into 29 SB pre-rRNA also appeared to be affected. Deletion of non-conserved segments, on the other hand, caused little or no disturbance in processing. Surprisingly, some combinations of such individually neutral deletions had a severe negative effect on the removal of ITS2, suggesting a requirement for a higher-order structure of ITS2. Finally, even structural alterations of ITS2 that did not noticeably affect processing, significantly reduced the growth rate of cells that exclusively express the mutant rDNA units. We take this as further evidence for a direct role of ITS2 in the formation of fully functional 60 S ribosomal subunits.

Reference Type
Journal Article
Authors
van Nues RW, Rientjes JM, Morre SA, Mollee E, Planta RJ, Venema J, Raue HA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference