Reference: Meluh PB and Koshland D (1995) Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol Biol Cell 6(7):793-807

Reference Help

Abstract

The MIF2 gene of Saccharomyces cerevisiae has been implicated in mitosis. Here we provide genetic evidence that MIF2 encodes a centromere protein. Specifically, we found that mutations in MIF2 stabilize dicentric minichromosomes and confer high instability (i.e., a synthetic acentric phenotype) to chromosomes that bear a cis-acting mutation in element I of the yeast centromeric DNA (CDEI). Similarly, we observed synthetic phenotypes between mutations in MIF2 and trans-acting mutations in three known yeast centromere protein genes-CEP1/CBF1/CPF1, NDC10/CBF2, and CEP3/CBF3B. In addition, the mif2 temperature-sensitive phenotype can be partially rescued by increased dosage of CEP1. Synthetic lethal interactions between a cep1 null mutation and mutations in either NDC10 or CEP3 were also detected. Taken together, these data suggest that the Mif2 protein interacts with Cep1p at the centromere and that the yeast centromere indeed exists as a higher order protein-DNA complex. The Mif2 and Cep1 proteins contain motifs of known transcription factors, suggesting that assembly of the yeast centromere is analogous to that of eukaryotic enhancers and origins of replication. We also show that the predicted Mif2 protein shares two short regions of homology with the mammalian centromere Ag CENP-C and that two temperature-sensitive mutations in MIF2 lie within these regions. These results provide evidence for structural conservation between yeast and mammalian centromeres.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Meluh PB, Koshland D
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference