Reference: Dammann R, et al. (1995) Transcription in the yeast rRNA gene locus: distribution of the active gene copies and chromatin structure of their flanking regulatory sequences. Mol Cell Biol 15(10):5294-303

Reference Help

Abstract


In growing yeast cells, about half of the 150 tandemly repeated rRNA genes are transcriptionally active and devoid of nucleosomes. By using the intercalating drug psoralen as a tool to mark accessible sites along chromatin DNA in vivo, we found that the active rRNA gene copies are rather randomly distributed along the ribosomal rRNA gene locus. Moreover, results from the analysis of a single, tagged transcription unit in the tandem array are not consistent with the presence of a specific subset of active genes that is stably maintained throughout cell divisions. In the rRNA intergenic spacers of yeast cells, an enhancer is located at the 3' end of each transcription unit, 2 kb upstream of the next promoter. Analysis of the chromatin structure along the tandem array revealed a structural link between transcription units and adjacent, 3' flanking enhancer sequences: each transcriptionally active gene is flanked by a nonnucleosomal enhancer, whereas inactive, nucleosome-packed gene copies are followed by enhancers regularly packaged in nucleosomes. From the fact that nucleosome-free enhancers were also detected in an RNA polymerase I mutant strain, we interpret these open chromatin structures as being the result of specific protein-DNA interactions that can occur before the onset of transcription. In contrast, in this mutant strain, all of the rRNA coding sequences are packaged in nucleosomal arrays. This finding indicates that the establishment of the open chromatin conformation on the activated gene copies requires elongating RNA polymerase I molecules advancing through the template.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Dammann R, Lucchini R, Koller T, Sogo JM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference