Reference: Caponigro G and Parker R (1995) Multiple functions for the poly(A)-binding protein in mRNA decapping and deadenylation in yeast. Genes Dev 9(19):2421-32

Reference Help

Abstract

The first step in the decay of many eukaryotic mRNAs is shortening of the poly(A) tail. In yeast, deadenylation leads to mRNA decapping and subsequent 5' --> 3' exonucleolytic degradation of the transcript body. We have determined that the major poly(A)-binding protein Pab1p plays at least two critical roles in this pathway. First, mRNAs in pab1 delta strains were decapped prior to deadenylation. This observation defines a new function for Pab1p as an inhibitor of mRNA decapping. Moreover, mutations that inhibit mRNA turnover suppress the inviability of a pab1 delta mutation, suggesting that premature mRNA decapping in pab1 delta strains contributes to cell death. Second, we find that Pab1p is not required for deadenylation, although in its absence poly(A) tail shortening rates are significantly reduced. In addition, in the absence of Pab1p, newly synthesized mRNAs had poly(A) tails longer than those in wild-type strains and showed an unexpected temporal delay prior to the initiation of deadenylation and degradation. These results define new and critical functions for Pab1p in the regulation of mRNA decapping and deadenylation, two important control points in the specification of mRNA half-lives. Moreover, these results suggest that Pab1p functions in additional phases of mRNA metabolism such as mRNP maturation.

Reference Type
Journal Article
Authors
Caponigro G, Parker R
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference