Take our Survey

Reference: Garrett-Engele P, et al. (1995) Calcineurin, the Ca2+/calmodulin-dependent protein phosphatase, is essential in yeast mutants with cell integrity defects and in mutants that lack a functional vacuolar H(+)-ATPase. Mol Cell Biol 15(8):4103-14

Reference Help

Abstract

Calcineurin is a conserved Ca2+/calmodulin-dependent protein phosphatase that plays a critical role in Ca(2+)-mediated signaling in many cells. Yeast cells lacking functional calcineurin (cna1 cna2 or cnb1 mutants) display growth defects under specific environmental conditions, for example, in the presence of high concentrations of Na+, Li+, Mn2+, or OH- but are indistinguishable from wild-type cells under standard culture conditions. To characterize regulatory pathways that may overlap with calcineurin, we performed a synthetic lethal screen to identify mutants that require calcineurin on standard growth media. The characterization of one such mutant, cnd1-8, is presented. The CND1 gene was cloned, and sequence analysis predicts that it encodes a novel protein 1,876 amino acids in length with multiple membrane-spanning domains. CND1 is identical to the gene identified previously as FKS1, ETG1, and CWH53, cnd1 mutants are sensitive to FK506 and cyclosporin A and exhibit slow growth that is improved by the addition of osmotic stabilizing agents. This osmotic agent-remedial growth defect and microscopic evidence of spontaneous cell lysis in cnd1 cultures suggest that cell integrity is compromised in these mutants. Mutations in the genes for yeast protein kinase C (pkc1) and a MAP kinase (mpk1/slt2) disrupt a Ca(2+)-dependent signaling pathway required to maintain a normal cell wall and cell integrity. We show that pkc1 and mpk1/slt2 growth defects are more severe in the absence of calcineurin function and less severe in the presence of a constitutively active form of calcineurin. These observations suggest that calcineurin and protein kinase C perform independent but physiologically related functions in yeast cells. We show that several mutants that lack a functional vacuolar H(+)-ATPase (vma) require calcineurin for vegetative growth. We discuss possible roles for calcineurin in regulating intracellular ion homeostasis and in maintaining cell integrity.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Garrett-Engele P, Moilanen B, Cyert MS
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference