Reference: Lehmeier T, et al. (1994) cDNA cloning of the Sm proteins D2 and D3 from human small nuclear ribonucleoproteins: evidence for a direct D1-D2 interaction. Proc Natl Acad Sci U S A 91(25):12317-21

Reference Help

Abstract


The major small nuclear ribonucleoproteins (snRNPs) U1, U2, U4/U6, and U5 share a set of common proteins denoted B/B', D1, D2, D3, E, F, and G which play an important part in the biogenesis of the snRNPs. In addition, there is a link between the common proteins and autoimmunity; the three D proteins, together with B/B', are the major autoantigens for the so-called anti-Sm antibodies often produced by patients suffering from systemic lupus erythematosus. Here we describe the characterization of the human proteins D2 and D3 by cDNA cloning and immunological methods. D2 and D3 are encoded by distinct genes and are 118 and 126 amino acids in length, respectively. Both proteins prepared by in vitro translation exhibit Sm epitopes and can be precipitated by anti-Sm autoantibodies. They react differently with various patient sera, in a manner consistent with the reaction pattern on immunoblots of the D proteins isolated from HeLa cells. D1 and D2 synthesized in vitro form specific complexes, a result that is significant for the assembly pathway of the various core proteins into an snRNP's core ribonucleoprotein structure. The D3 protein is homologous to the human D1 protein, showing an overall amino acid sequence identity of 29%, including two regions with over 60% identity. D2 has less than 15% sequence identity with D1 and D3. A data bank search revealed a striking similarity (with more than 40% sequence identity) between human D3 and a Saccharomyces cerevisiae gene, previously published as the 5' flanking gene of yeast pep3 [Preston, R.A., Manolson, M., Becherer, K., Weidenhammer, E., Kirkpatrick, D., Wright, R. & Jones, E. (1991) Mol. Cell. Biol. 11, 5801-5812], suggesting that this gene encodes the yeast homologue of the human D3 protein.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Comparative Study
Authors
Lehmeier T, Raker V, Hermann H, Luhrmann R
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference