Reference: Manolson MF, et al. (1994) STV1 gene encodes functional homologue of 95-kDa yeast vacuolar H(+)-ATPase subunit Vph1p. J Biol Chem 269(19):14064-74

Reference Help

Abstract

The Saccharomyces cerevisiae gene, VPH1 (Vacuolar pH 1), encodes a 95-kDa integral membrane subunit of the vacuolar-type H(+)-ATPase (V-ATPase) that is required for enzyme assembly; disruption of the VPH1 gene impairs vacuolar acidification (Manolson, M.F., Proteau, D., Preston, R. A., Stenbit, A., Roberts, B. T., Hoyt, M. A., Preuss, D., Mulholland, J., Botstein, D., and Jones, E. W. (1992) J. Biol. Chem. 267, 14294-14303). Here we show that STV1 (Similar To VPH1) encodes an integral membrane polypeptide of 102 kDa with 54% identity with the peptide sequence of Vph1p. High copy expression of STV1 partially restores vacuolar acidification in a delta vph1 mutant strain; solubilization and fractionation of membrane proteins from these vacuoles show that Stv1p co-purifies with bafilomycin A1-sensitive ATPase activity and with the 60- and 69-kDa V-ATPase subunits. Immunofluorescence microscopy of strains bearing a single copy of epitope-tagged STV1 reveals punctate staining of the cytoplasm; overexpression of epitope-tagged Stv1p reveals both punctate cytoplasmic staining and vacuolar membrane staining. Northern analysis shows that disruption of STV1 does not affect the level of transcription of VPH1 and that disruption of VPH1 does not affect the level of transcription of STV1. Strains bearing disruption of genes encoding other V-ATPase subunits (VMA1, VMA2, VMA3, and VMA4) fail to grow on media supplemented with 100 mM CaCl2 or 4 mM ZnCl2, media buffered to pH 7.5, or media with a glycerol carbon source. On the same types of media only a delta vph1 delta stv1 double disruption mutant has growth phenotypes equivalent to strains bearing a single disruption of the VMA1, VMA2, VMA3, and VMA4 genes; a delta vph1 strain has only moderate growth inhibition while a delta stv1 strain has wild type growth on the conditions listed above. We conclude that Stv1p is a functional homologue of Vph1p and suggest that Stv1p and Vph1p may be equivalent subunits for V-ATPases located on different organelles. The function of these 100-kDa homologues may be to target or regulate other common V-ATPase subunits for two distinct cellular locations.

Reference Type
Journal Article
Authors
Manolson MF, Wu B, Proteau D, Taillon BE, Roberts BT, Hoyt MA, Jones EW
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference