Reference: Stevenson BJ, et al. (1995) Mutation of RGA1, which encodes a putative GTPase-activating protein for the polarity-establishment protein Cdc42p, activates the pheromone-response pathway in the yeast Saccharomyces cerevisiae. Genes Dev 9(23):2949-63

Reference Help

Abstract

We have selected yeast mutants that exhibit a constitutively active pheromone-response pathway in the absence of the beta subunit of the trimeric G protein. Genetic analysis of one such mutant revealed that it contained recessive mutations in two distinct genes, both of which contributed to the constitutive phenotype. One mutation identifies the RGA1 locus (Rho GTPase activating protein), which encodes a protein with homology to GAP domains and to LIM domains. Deletion of RGA1 is sufficient to activate the pathway in strains lacking the G beta subunit. Moreover, in wild-type strains, deletion of RGA1 increases signaling in the pheromone pathway, whereas over-expression of RGA1 dampens signaling, demonstrating that Rga1p functions as a negative regulator of the pheromone response pathway. The second mutation present in the original mutant proved to be an allele of a known gene, PBS2, which encodes a putative protein kinase that functions in the high osmolarity stress pathway. The pbs2 mutation enhanced the rga1 mutant phenotype, but by itself did not activate the pheromone pathway. Genetic and two-hybrid analyses indicate that an important target of Rga1p is Cdc42p, a p21 GTPase required for polarity establishment and bud emergence. This finding coupled with recent experiments with mammalian and yeast cells indicating that Cdc42p can interact with and activate Ste20p, a protein kinase that operates in the pheromone pathway, leads us to suggest that Rga1p controls the activity of Cdc42p, which in turn controls the magnitude of signaling in the pheromone pathway via Ste20p.

Reference Type
Journal Article
Authors
Stevenson BJ, Ferguson B, De Virgilio C, Bi E, Pringle JR, Ammerer G, Sprague GF Jr
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference