Take our Survey

Reference: Warner JR, et al. (1985) Saccharomyces cerevisiae coordinates accumulation of yeast ribosomal proteins by modulating mRNA splicing, translational initiation, and protein turnover. Mol Cell Biol 5(6):1512-21

Reference Help

Abstract

The rate of accumulation of each ribosomal protein is carefully regulated by the yeast cell to provide the equimolar ratio necessary for the assembly of the ribosome. The mechanisms responsible for this regulation have been examined by introducing into the yeast cell extra copies of seven individual ribosomal protein genes carried on autonomously replicating plasmids. In each case studied the plasmid-borne gene was transcribed to the same degree as the genomic gene. Nevertheless, the cell maintained a balanced accumulation of ribosomal proteins, using a variety of methods other than transcription. (i) Several ribosomal proteins were synthesized in substantial excess. However, the excess ribosomal protein was rapidly degraded. (ii) The excess mRNA for two of the ribosomal protein genes was translated inefficiently. We provide evidence that this was due to inefficient initiation of translation. (iii) The transcripts derived from two of the ribosomal protein genes were spliced inefficiently, leading to an accumulation of precursor RNA. We present a model which proposes the autogenous regulation of mRNA splicing as a eucaryotic parallel of the autogenous regulation of mRNA translation in procaryotes. Finally, the accumulation of each ribosomal protein was regulated independently. In no instance did the presence of excess copies of the gene for one ribosomal protein affect the synthesis of another ribosomal protein.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Warner JR, Mitra G, Schwindinger WF, Studeny M, Fried HM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference