Reference: Rymond BC, et al. (1987) A novel role for the 3' region of introns in pre-mRNA splicing of Saccharomyces cerevisiae. Genes Dev 1(3):238-46

Reference Help

Abstract


To investigate the importance of sequences between the yeast (Saccharomyces cerevisiae) branch point (TACTAAC box) and 3' splice site (AG), we generated a series of pre-mRNA substrates that differed in the length of RNA retained on the 3' side of the TACTAAC box. These pre-mRNAs were compared as substrates for the first step of in vitro splicing (5' cleavage and lariat formation) and in vitro spliceosome assembly (complex formation) in a whole-cell yeast extract. The results indicate that for rp51A pre-mRNA at least 29 nucleotides of RNA on the 3' side of the TACTAAC box are required for 5' cleavage and lariat formation, as smaller substrates fail to manifest any detectable cleavage or ligation events. Analysis of splicing complex assembly indicates that these smaller substrates undergo efficient yet incomplete complex formation; they are blocked at a late stage of spliceosome assembly, the complex I to complex II transition (Pikielny et al. 1986), a result which suggests that the failure to form lariats is due to a specific assembly defect. The lariat formation block (and assembly defect) can be relieved by the addition of ribohomopolymer "tails" to the 3' end of the shortened rp51A pre-mRNAs, and similar results were obtained with shortened actin pre-mRNAs. The results of this study indicate that this region of the pre-mRNA serves a specific function late in in vitro spliceosome assembly.

Reference Type
Journal Article
Authors
Rymond BC, Torrey DD, Rosbash M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference