Take our Survey

Reference: Rotenberg MO, et al. (1988) Depletion of Saccharomyces cerevisiae ribosomal protein L16 causes a decrease in 60S ribosomal subunits and formation of half-mer polyribosomes. Genes Dev 2(2):160-72

Reference Help

Abstract


We constructed yeast strains containing deletion-insertion null alleles of the RPL16A or RPL16B genes encoding the 60S ribosomal subunit protein L16 to determine the role of L16 in the synthesis and function of ribosomes. Strains lacking a functional RPL16A gene grow as rapidly as wild type, whereas those containing a null allele of RPL16B grow more slowly than wild type. RNA analysis using RPL16 probes revealed that both RPL16 genes are transcribed and that RPL16B transcripts accumulate to twice the level of RPL16A transcripts. No evidence was obtained for the occurrence of dosage compensation at the level of RPL16 mRNA accumulation in either mutant. Strains lacking both RPL16 genes are apparently inviable, demonstrating that L16 is an essential yeast ribosomal protein. Introduction of an extra copy of either RPL16 gene into rpl16b mutants restored wild-type growth rates, indicating that the two forms of the L16 protein are interchangeable. rpl16 mutants are deficient in 60S ribosomal subunits relative to 40S subunits. 43S preinitiation complexes accumulate in half-mer polyribosomes in the absence of sufficient 60S subunits. We postulate that the slow-growth phenotype of rpl16 mutants results from the perturbation of initiation of protein synthesis.

Reference Type
Journal Article
Authors
Rotenberg MO, Moritz M, Woolford JL Jr
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference