Take our Survey

Reference: Cheng SC and Abelson J (1987) Spliceosome assembly in yeast. Genes Dev 1(9):1014-27

Reference Help

Abstract

Precursors to mRNA become substrates for splicing by being assembled into a complex multisubunit structure, the spliceosome. To study the assembly of the yeast spliceosome, intermediate complexes were separated by electrophoresis on nondenaturing polyacrylamide gels. Four splicing-dependent complexes, A1, A2-1, A2-2, and B, were observed. The order of assembly of these complexes was determined to be B----A2-1----A1----A2-2. The assembly process can be blocked at complex A1 by addition of 5 mM EDTA or by carrying out the assembly process in heat-inactivated rna2 extracts. The snRNA composition of the complexes was determined by hybridization with probes for five yeast snRNAs. snR14 (U4) was only found in complex A2-1, snR6 (U6) and snR7 (U5) were in complexes A1, A2-1, and A2-2, whereas snR20 (U2) was in all four of the complexes. snR19 (U1) was not present in any of the complexes. Hybridization with these probes was also employed to detect snRNPs present in yeast splicing extracts. We found that snR6, snR7, and snR14 were present together in a large complex. This complex underwent an ATP-dependent dissociation to give snR7 and snR6-snR14 complexes. snR19 and snR20 are present in distinct RNPs but the mobility of these is not affected by ATP. A mechanism for spliceosome assembly is proposed.

Reference Type
Journal Article
Authors
Cheng SC, Abelson J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference