Take our Survey

Reference: Ares M Jr (2013) Analysis of Splicing In Vitro Using Extracts of Saccharomyces cerevisiae. Cold Spring Harb Protoc 2013(10)

Reference Help

Abstract


In vitro splicing studies are a powerful means of investigating the requirements and mechanisms of action of the many components of the splicing apparatus. The ability to add and subtract components, purify activities, and reconstitute activity, as well as to expose the apparatus to chemical probes of various types, allows a far more mechanistically detailed view of the process to emerge than is available from genetic or in vivo studies alone. Two kinds of activities are assayed during in vitro splicing. The first concerns the chemical conversion of the substrate pre-mRNA into splicing intermediates and products and is usually visualized using a labeled substrate followed by separation on a denaturing gel. The second concerns the assembly of noncovalent complexes between the substrate and the myriad components of the splicing apparatus. This is also visualized using a labeled substrate, but the separation of complexes is achieved using native gel electrophoresis or gradient sedimentation. In this protocol, we describe the splicing reaction and its preparation for analysis by denaturing gels and native splicing complex gels. We also provide conditions for depletion of ATP, a critical cofactor that is hydrolyzed during numerous key steps in spliceosome assembly and splicing progression.

Reference Type
Journal Article
Authors
Ares M Jr
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference