Reference: Cankorur-Cetinkaya A, et al. (2013) Transcriptional remodelling in response to changing copper levels in the Wilson and Menkes disease model of Saccharomyces cerevisiae. Mol Biosyst 9(11):2889-2908

Reference Help

Abstract

A high degree of conservation of the copper homeostasis pathway between yeast and humans makes yeast an ideal model organism for studying copper-related disorders. In this study, a system based integrative approach was used to investigate the genome-wide effects of the deletion of the yeast ortholog of Wilson and Menkes diseases encoding a Cu2+-transporting P-type ATPase (CCC2) in different copper containing media and to compare with the wild type. The experimental design applied in this study enabled the observation of the effect of CCC2 deletion, extracellular copper levels and interactive effects of both factors in S. cerevisiae cells. The integrative analysis of the transcriptome with the interactome and regulome further elucidated the pathways affected by the disturbance of copper homeostasis. The results demonstrated that iron homeostasis is disturbed in the absence of CCC2 under copper deficient conditions and also revealed the importance of this gene in the maintenance of iron homeostasis under high copper conditions. NAD+ metabolism was observed to be affected both by the deletion of CCC2 and the level of bio-available extracellular copper. The regulation of glucose transporters was also affected in the absence of CCC2 and a starvation-like response was observed in a copper level dependent manner. Alterations in the amino acid metabolism and specifically in the arginine metabolic process observed at the transcriptional level provided further support through the integration of the metabolomic data. This study also highlighted pyridoxine deficiency caused by the absence of CCC2. The observation of the improvement in the respiratory capacity of CCC2 deleted cells by supplementation with pyridoxine as well as with nicotinic acid may shed light on novel therapeutic interventions for Wilson and Menkes diseases.

Reference Type
Journal Article
Authors
Cankorur-Cetinkaya A, Eraslan S, Kirdar B
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference