Reference: Chatzi A, et al. (2013) Biogenesis of yeast Mia40 - uncoupling folding from import and atypical recognition features. FEBS J 280(20):4960-4969

Reference Help

Abstract

UNLABELLED: The discovery of the mitochondrial intermembrane space assembly (MIA) pathway was followed by studies that focused mainly on the typical small substrates of this disulfide relay system and the interactions between its two central partners: the oxidoreductase Mia40 and the FAD-protein Erv1. Recent studies have revealed that more complex proteins utilize this pathway, including Mia40 itself. In the present study, we dissect the Mia40 biogenesis in distinct stages, supporting a kinetically coordinated sequence of events, starting with (a) import and insertion through the Tim23 translocon, followed by (b) folding of the core of imported Mia40 assisted by the endogenous Mia40 and (c) final interaction with Erv1. The interaction with endogenous Mia40 and the subsequent interaction with Erv1 represent kinetically distinguishable steps that rely on completely different determinants. Interaction with Mia40 proceeds very early (within 30 s) and is characterized by no Cys-specificity, an increased tolerance to mutations of the hydrophobic substrate-binding cleft and no apparent dependence on glutathione as a proofreading mechanism. All of these features illustrate a very atypical behaviour for the Mia40 precursor compared to other substrates of the MIA pathway. By contrast, interaction with Erv1 occurs after 5 min of import and relies on a more stringent specificity. ? 2013 FEBS.

Reference Type
Journal Article
Authors
Chatzi A, Sideris DP, Katrakili N, Pozidis C, Tokatlidis K
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference