Take our Survey

Reference: Taheri G, et al. (2013) Disruption of protein complexes. J Bioinform Comput Biol 11(3):1341008

Reference Help

Abstract


Protein complexes are a cornerstone of many biological processes and, together, they form various types of molecular machinery that perform a vast array of biological functions. Different complexes perform different functions and, the same complex can perform very different functions that depend on a variety of factors. Thus disruption of protein complexes can be lethal to an organism. It is interesting to identify a minimal set of proteins whose removal would lead to a massive disruption of protein complexes and, to understand the biological properties of these proteins. A method is presented for identifying a minimum number of proteins from a given set of complexes so that a maximum number of these complexes are disrupted when these proteins are removed. The method is based on spectral bipartitioning. This method is applied to yeast protein complexes. The identified proteins participate in a large number of biological processes and functional modules. A large proportion of them are essential proteins. Moreover, removing these identified proteins causes a large number of the yeast protein complexes to break into two fragments of nearly equal size, which minimizes the chance of either fragment being functional. The method is also superior in these aspects to alternative methods based on proteins with high connection degree, proteins whose neighbors have high average degree, and proteins that connect to lots of proteins of high connection degree. Our spectral bipartitioning method is able to efficiently identify a biologically meaningful minimal set of proteins whose removal causes a massive disruption of protein complexes in an organism.

Reference Type
Journal Article
Authors
Taheri G, Habibi M, Wong L, Eslahchi C
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference