Reference: Sridhar LN (2013) Global optimization of the Saccharomyces cerevisiae: Fermentation process. Biotechnol Prog 29(4):917-23

Reference Help

Abstract

In this article, steady-state optimization of the Saccharomyces cerevisiae fermentation process problem is performed revealing the existence of multiple optimum solutions. The globally optimum solution was determined using the NEOS global optimization solver LINDO. A branch and bound strategy (bnb20.m) and the global search and multistart algorithms in the MATLAB global optimization toolbox were successful in determining locally optimum solutions and these results are validated by plotting the objective function against the decision variables. While in some cases all the strategies were successful in obtaining the globally optimum solutions, an example is presented where the most beneficial product value, which is not a stationary point and lies on the feasible boundary, is obtained by the LINDO global optimization solver (but not the other routines) as the globally optimum solution. The Jones-Kompala model was used to model the steady-state of the fermentation process. While several articles have been published demonstrating the existence of nonlinearities and bifurcations in this model, the challenges posed by this model to optimization has never been investigated so far and this work attempts to do so. Both dilution rate and the oxygen mass transfer coefficient were used as the decision variables individually and together. ? 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:917-923, 2013.

Reference Type
Journal Article
Authors
Sridhar LN
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference