Reference: Emrick D, et al. (2013) The antifungal occidiofungin triggers an apoptotic mechanism of cell death in yeast. J Nat Prod 76(5):829-38

Reference Help

Abstract

Occidiofungin is a nonribosomally synthesized cyclic peptide having a base mass of 1200 Da. It is naturally produced by the soil bacterium Burkholderia contaminans MS14 and possesses potent broad-spectrum antifungal properties. The mechanism of action of occidiofungin is unknown. Viability, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), reactive oxygen species (ROS) detection, membrane and cell wall stability, and membrane mimetic assays were used to characterize the effect of occidiofungin on yeast cells. Confocal and electron microscopy experiments were used to visualize morphological changes within treated cells. TUNEL and ROS detection assays revealed an increase in fluorescence with increasing concentrations of the antifungal. Yeast cells appeared to shrink in size and showed the presence of 'dancing bodies' at low drug concentrations (1 ?g/mL). A screen carried out on Saccharomyces cerevisiae gene deletion mutants in the apoptotic and autophagy pathways identified the apoptotic gene for YCA1, as having an important role in occidiofungin response as cells deleted for this gene exhibit a 2-fold increase in resistance. Results from our experiments demonstrate that the mechanism of action for occidiofungin in yeast is different from that of the common classes of antifungals used in the clinic, such as azoles, polyenes, and echinocandins. Our study also indicates that occidiofungin causes cell death in yeast through an apoptotic mechanism of action.

Reference Type
Journal Article
Authors
Emrick D, Ravichandran A, Gosai J, Lu S, Gordon DM, Smith L
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference