Take our Survey

Reference: Allen B and Nowak MA (2013) Cooperation and the fate of microbial societies. PLoS Biol 11(4):e1001549

Reference Help

Abstract

MICROORGANISMS HAVE BEEN COOPERATING WITH EACH OTHER FOR BILLIONS OF YEARS: by sharing resources, communicating with each other, and joining together to form biofilms and other large structures. These cooperative behaviors benefit the colony as a whole; however, they may be costly to the individuals performing them. This raises the question of how such cooperation can arise from natural selection. Mathematical modeling is one important avenue for exploring this question. Evolutionary experiments are another, providing us with an opportunity to see evolutionary dynamics in action and allowing us to test predictions arising from mathematical models. A new study in this issue of PLOS Biology investigates the evolution of a cooperative resource-sharing behavior in yeast. Examining the competition between cooperating and "cheating" strains of yeast, the authors find that, depending on the initial mix of strains, this yeast society either evolves toward a stable coexistence or collapses for lack of cooperation. Using a simple mathematical model, they show how these dynamics arise from eco-evolutionary feedback, where changes in the frequencies of strains are coupled with changes in population size. This study and others illustrate the combined power of modeling and experiment to elucidate the origins of cooperation and other fundamental questions in evolutionary biology.

Reference Type
Journal Article
Authors
Allen B, Nowak MA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference