Take our Survey

Reference: Couto N, et al. (2013) Partition and Turnover of Glutathione Reductase from Saccharomyces cerevisiae : A Proteomic Approach. J Proteome Res 12(6):2885-94

Reference Help

Abstract


Glutathione reductase (Glr1) is a low abundance protein involved in defense mechanisms against reactive oxygen species. Expressed on cytosolic ribosomes, the same gene, GLR1, uses alternative start codons to generate two forms of Glr1. Translation from the first AUG codon generates the mitochondrial form incorporating a presequence necessary for import; translation from the second AUG codon yields the cytosolic counterpart. Proteomic strategies were used to analyze the N-terminal sequences and the turnover of Saccharomyces cerevisiae Glr1. The N-terminus of cytosolic Glr1 was found normally to be N-acetylserine. When a Glr1-overproducing strain was employed, unprocessed mitochondrial Glr-1 with N-terminal acetylmethionine also accumulated in the cytosol. The processed mitochondrial Glr1 was surprisingly found to have three alternative N-termini, none of them acetylated. Mitochondrial Glr1 was turned over faster than the cytosolic form by a factor of about 2, consistent with the importance of redox homeostasis in the mitochondria. These experiments also allowed us to estimate the extent of "leaky scanning" in the synthesis of Glr1. Surprisingly, the second AUG appears to be responsible for most of the cellular Glr1. This is the first report of protein turnover measurements of a low-abundance protein distributed in different compartments of a eukaryotic cell.

Reference Type
Journal Article
Authors
Couto N, Malys N, Gaskell SJ, Barber J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference