Reference: Dong J, et al. (2013) A two-step integration method for seamless gene deletion in baker's yeast. Anal Biochem 439(1):30-6

Reference Help

Abstract


In this study, we developed a seamless gene deletion method through a two-step integration protocol to construct an industrial baker's yeast with NTH1 deletion. A fusion fragment consisted of the upstream sequence, and the downstream sequence of NTH1 was subcloned into an integrating plasmid containing a URA3 counter-selection marker for excision of unwanted DNA. The plasmid was integrated into the genomic NTH1 locus of recipient baker's yeast, leading to tandem repeats of the upstream flank and the downstream flank. Pop-out of the URA3 marker occurs by integration recombination between either the downstream flank repeats or the upstream flank repeats. Integration recombination between the repeats results in NTH1 deletion without any heterologous DNA and reversion to a wild-type strain. The desired deletion occurred with a frequency of approximately 10(-5). Polymerase chain reaction verification and sequence analysis confirmed the NTH1 disruption and the absence of integrated plasmid sequences in the genome of the selected strain. In addition, the mutant with NTH1 deletion exhibits a higher trehalose accumulation and consequently displays a higher viability of yeast cells after freezing. Thus, this method proposes a protocol to construct mutant yeast without leaving behind any heterologous DNA sequences and will facilitate the genetic engineering of any yeast.

Reference Type
Journal Article
Authors
Dong J, Wang G, Zhang C, Tan H, Sun X, Wu M, Xiao D
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference