Take our Survey

Reference: Zhang X, et al. (2013) A new method for the discovery of essential proteins. PLoS One 8(3):e58763

Reference Help

Abstract

BACKGROUND: Experimental methods for the identification of essential proteins are always costly, time-consuming, and laborious. It is a challenging task to find protein essentiality only through experiments. With the development of high throughput technologies, a vast amount of protein-protein interactions are available, which enable the identification of essential proteins from the network level. Many computational methods for such task have been proposed based on the topological properties of protein-protein interaction (PPI) networks. However, the currently available PPI networks for each species are not complete, i.e. false negatives, and very noisy, i.e. high false positives, network topology-based centrality measures are often very sensitive to such noise. Therefore, exploring robust methods for identifying essential proteins would be of great value. METHOD: In this paper, a new essential protein discovery method, named CoEWC (Co-Expression Weighted by Clustering coefficient), has been proposed. CoEWC is based on the integration of the topological properties of PPI network and the co-expression of interacting proteins. The aim of CoEWC is to capture the common features of essential proteins in both date hubs and party hubs. The performance of CoEWC is validated based on the PPI network of Saccharomyces cerevisiae. Experimental results show that CoEWC significantly outperforms the classical centrality measures, and that it also outperforms PeC, a newly proposed essential protein discovery method which outperforms 15 other centrality measures on the PPI network of Saccharomyces cerevisiae. Especially, when predicting no more than 500 proteins, even more than 50% improvements are obtained by CoEWC over degree centrality (DC), a better centrality measure for identifying protein essentiality. CONCLUSIONS: We demonstrate that more robust essential protein discovery method can be developed by integrating the topological properties of PPI network and the co-expression of interacting proteins. The proposed centrality measure, CoEWC, is effective for the discovery of essential proteins.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Zhang X, Xu J, Xiao WX
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference