Reference: Mbantenkhu M, et al. (2013) A short carboxyl-terminal tail is required for single-stranded DNA binding, higher-order structural organization, and stability of the mitochondrial single-stranded annealing protein Mgm101. Mol Biol Cell 24(10):1507-18

Reference Help

Abstract


Mgm101 is a Rad52-type single-stranded annealing protein (SSAP) required for mitochondrial DNA (mtDNA) repair and maintenance. Structurally, Mgm101 forms large oligomeric rings. Here we determine the function(s) of a 32-amino acid carboxyl-terminal tail (Mgm101(238-269)) conserved in the Mgm101 family of proteins. Mutagenic analysis shows that Lys-253, Trp-257, Arg-259, and Tyr-268 are essential for mtDNA maintenance. Mutations in Lys-251, Arg-252, Lys-260, and Tyr-266 affect mtDNA stability at 37 degrees C and under oxidative stress. The Y268A mutation severely affects single-stranded DNA (ssDNA) binding without altering the ring structure. Mutations in the Lys-251-Arg-252-Lys-253 positive triad also affect ssDNA binding. Moreover, the C-tail alone is sufficient to mediate ssDNA binding. Finally, we find that the W257A and R259A mutations dramatically affect the conformation and oligomeric state of Mgm101. These structural alterations correlate with protein degradation in vivo. The data thus indicate that the C-tail of Mgm101, likely displayed on the ring surface, is required for ssDNA binding, higher-order structural organization, and protein stability. We speculate that an initial electrostatic and base-stacking interaction with ssDNA could remodel ring organization. This may facilitate the formation of nucleoprotein filaments competent for mtDNA repair. These findings could have broad implications for understanding how SSAPs promote DNA repair and genome maintenance.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Mbantenkhu M, Wierzbicki S, Wang X, Guo S, Wilkens S, Chen XJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference