Take our Survey

Reference: Acquaviva L, et al. (2013) Spp1 at the crossroads of H3K4me3 regulation and meiotic recombination. Epigenetics 8(4):355-60

Reference Help

Abstract

In Saccharomyces cerevisiae, all H3K4 methylation is performed by a single Set1 Complex (Set1C) that is composed of the catalytic (Set1) and seven other subunits (Swd1, Swd2, Swd3, Bre2, Sdc1, Spp1 and Shg1). It has been known for quite some time that trimethylated H3K4 (H3K4me3) is enriched in the vicinity of meiotic double-strand breaks (DSBs), but the link between H3K4me3 and the meiotic nuclease Spo11 was uncovered only recently. The PHD-containing subunit Spp1, by interacting with H3K4me3 and Mer2, was shown to promote the recruitment of potential meiotic DSB sites to the chromosomal axis allowing their subsequent cleavage by Spo11. Therefore, Spp1 emerged as a key regulator of the H3K4 trimethylation catalyzed by Set1C and of the formation of meiotic DSBs. These findings illustrate the remarkable multifunctionality of Spp1, which not only regulates the catalytic activity of the enzyme (Set1), but also interacts with the deposited mark, and mediates its biological effect (meiotic DSB formation) independently of the complex. As it was previously described for Swd2, and now for Spp1, we anticipate that other Set1C subunits, in addition to regulating H3K4 methylation, may participate in diverse biological functions inside or outside of the complex.

Reference Type
Journal Article
Authors
Acquaviva L, Drogat J, Dehe PM, de la Roche Saint-Andre C, Geli V
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference