Reference: Afek A and Lukatsky DB (2013) Genome-wide organization of eukaryotic preinitiation complex is influenced by nonconsensus protein-DNA binding. Biophys J 104(5):1107-15

Reference Help

Abstract

Genome-wide binding preferences of the key components of eukaryotic preinitiation complex (PIC) have been recently measured at high resolution in Saccharomyces cerevisiae by Rhee and Pugh. However, the rules determining the PIC binding specificity remain poorly understood. In this study, we show that nonconsensus protein-DNA binding significantly influences PIC binding preferences. We estimate that such nonconsensus binding contributes statistically at least 2-3 kcal/mol (on average) of additional attractive free energy per protein per core-promoter region. The predicted attractive effect is particularly strong at repeated poly(dA:dT) and poly(dC:dG) tracts. Overall, the computed free-energy landscape of nonconsensus protein-DNA binding shows strong correlation with the measured genome-wide PIC occupancy. Remarkably, statistical PIC preferences of binding to both TFIID-dominated and SAGA-dominated genes correlate with the nonconsensus free-energy landscape, yet these two groups of genes are distinguishable based on the average free-energy profiles. We suggest that the predicted nonconsensus binding mechanism provides a genome-wide background for specific promoter elements, such as transcription-factor binding sites, TATA-like elements, and specific binding of the PIC components to nucleosomes. We also show that nonconsensus binding has genome-wide influence on transcriptional frequency.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Afek A, Lukatsky DB
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference