Reference: Zhi H, et al. (2013) Ssk1p-independent activation of Ssk2p plays an important role in the osmotic stress response in Saccharomyces cerevisiae: alternative activation of Ssk2p in osmotic stress. PLoS One 8(2):e54867

Reference Help

Abstract


In , external high osmolarity activates the HOG MAPK pathway, which controls various aspects of osmoregulation. MAPKKK Ssk2 is activated by Ssk1 in the SLN1 branch of the osmoregulatory HOG MAPK pathway under hyperosmotic stress. We observed that Ssk2 can be activated independent of Ssk1 upon osmotic shock by an unidentified mechanism. The domain for the Ssk1p-independent activation was identified to be located between the amino acids 177 approximately 240. This region might be involved in the binding of an unknown regulator to Ssk2 which in turn activates Ssk2p without Ssk1p under hyperosmotic stress. The osmotic stress response through the Ssk1p-independent Ssk2p activation is strong, although its duration is short compared with the Ssk1p-dependent activation. The alternative Ssk2p activation is also important for the salt resistance.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Zhi H, Tang L, Xia Y, Zhang J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference