Take our Survey

Reference: Chen SC, et al. (2013) Evolution of vitamin B(2) biosynthesis: eubacterial RibG and fungal Rib2 deaminases. Acta Crystallogr D Biol Crystallogr 69(Pt 2):227-36

Reference Help

Abstract

Eubacterial RibG and yeast Rib2 possess a deaminase domain for pyrimidine deamination in the second and third steps, respectively, of riboflavin biosynthesis. These enzymes are specific for ribose and ribitol, respectively. Here, the crystal structure of Bacillus subtilis RibG in complex with a deaminase product is reported at 2.56 A resolution. Two loops move towards the product on substrate binding, resulting in interactions with the ribosyl and phosphate groups and significant conformational changes. The product carbonyl moiety is bent out of the pyrimidine ring to coordinate to the catalytic zinc ion. Such distortions in the bound substrate and product may play an essential role in enzyme catalysis. The yeast Rib2 structure was modelled and a mutational analysis was carried out in order to understand the mechanism of substrate recognition in these two enzymes. Detailed structural comparisons revealed that the two consecutive carbonyl backbones that occur prior to the PCXXC signature constitute a binding hole for the target amino group of the substrate. This amino-binding hole is essential in B. subtilis RibG and is also conserved in the RNA/DNA-editing deaminases.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Chen SC, Shen CY, Yen TM, Yu HC, Chang TH, Lai WL, Liaw SH
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference