Take our Survey

Reference: Li R, et al. (2013) Candida albicans flu1-mediated efflux of salivary histatin 5 reduces its cytosolic concentration and fungicidal activity. Antimicrob Agents Chemother 57(4):1832-9

Reference Help

Abstract


Histatin 5 (Hst 5) is a salivary human antimicrobial peptide that is toxic to the opportunistic yeast Candida albicans. Fungicidal activity of Hst 5 requires intracellular translocation and accumulation to a threshold concentration for it to disrupt cellular processes. Previously, we observed that total cytosolic levels of Hst 5 were gradually reduced from intact cells, suggesting that C. albicans possesses a transport mechanism for efflux of Hst 5. Since we identified C. albicans polyamine transporters responsible for Hst 5 uptake, we hypothesized that one or more polyamine efflux transporters may be involved in the efflux of Hst 5. C. albicans FLU1 and TPO2 were found to be the closest homologs of Saccharomyces cerevisiae TPO1, which encodes a major spermidine efflux transporter, indicating that the products of these two genes may be involved in efflux of Hst 5. We found that flu1?/? cells, but not tpo2?/? cells, had significant reductions in their rates of Hst 5 efflux and had significantly higher cytoplasmic Hst 5 and Hst 5 susceptibilities than did the wild type. We also found that flu1?/? cells had reduced biofilm formation compared to wild-type cells in the presence of Hst 5. Transcriptional levels of FLU1 were not altered over the course of treatment with Hst 5; therefore, Hst 5 is not likely to induce FLU1 gene overexpression as a potential mechanism of resistance. Thus, Flu1, but not Tpo2, mediates efflux of Hst 5 and is responsible for reduction of its toxicity in C. albicans.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Li R, Kumar R, Tati S, Puri S, Edgerton M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference