Reference: Chen G and Xu Z (2013) Global protein expression in response to extremely low frequency magnetic fields. Adv Exp Med Biol 990:107-10

Reference Help

Abstract


Daily exposure to extremely low frequency magnetic fields (ELF MF) in the environment has raised public concerns on human health. Epidemiological studies suggest that exposure to ELF MF might associate with an elevated risk of cancer and other diseases in humans. To explain and/or support epidemiological observations, many laboratory studies have been conducted to elucidate the biological effects of ELF MF exposure and the underlying mechanisms of action. In order to reveal the global effects of ELF MF on protein expression, the proteomics approaches has been employed in this research field. In 2005, WHO organized a Workshop on Application of Proteomics and Transcriptomics in electromagnetic fields (EMF) Research in Helsinki, Finland to discuss the related problems and solutions. Later the journal Proteomics published a special issue devoted to the application of proteomics to EMF research. This chapter aims to summarize the current research progress and discuss the applicability of proteomics approaches in studying on ELF MF induced biological effects and the underlying mechanisms.

Reference Type
Journal Article | Review
Authors
Chen G, Xu Z
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference