Reference: Shrestha A, et al. (2013) The role of Yca1 in proteostasis. Yca1 regulates the composition of the insoluble proteome. J Proteomics 81:24-30

Reference Help

Abstract


Proteostasis, the process of balancing protein production with protein degradation is vital to normal cell function. Defects within the mechanisms that control proteostasis lead to increased content of a specialized insoluble protein fraction that forms dense aggregates within the cell. We have previously implicated the Saccharomyces cerevisiae metacaspase Yca1 as an active participant in maintaining proteostasis, whereby Yca1 acts to limit aggregate content. Here, we further characterized the proteostasis role of Yca1 by conducting proteomic analysis of the insoluble protein fraction in wildtype and Yca1 knockout cells, under normal and heat stressed conditions. Our findings suggest that the composition of insoluble protein fraction is non-specific and comprises a wide array of protein species rather than a limited repertoire of aggregate susceptible proteins or peptides. Interestingly, the loss of Yca1 led to a significant decrease of proteins that control ribosome biogenesis and protein synthesis within the insoluble fraction, indicating that the cell may invoke a compensatory mechanism to limit protein production during stress, a feature dependent on Yca1 activity. Finally, we noted that protein degradation factors such as Cdc48 co-localize with Yca1 to the insoluble fraction, supporting the hypothesis that Yca1 may act primarily to dissolve or reduce accumulated aggregates. This article is part of a Special Issue entitled: From protein structures to clinical applications.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Shrestha A, Puente LG, Brunette S, Megeney LA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference