Reference: Fredrickson EK, et al. (2013) Means of self-preservation: how an intrinsically disordered ubiquitin-protein ligase averts self-destruction. Mol Biol Cell 24(7):1041-52

Reference Help

Abstract

Ubiquitin-protein ligases (E3s) that ubiquitinate substrates for proteasomal degradation are often in the position of ubiquitinating themselves due to interactions with a charged ubiquitin-conjugating enzyme (E2). This can mediate the E3's proteasomal degradation. Many E3s have evolved means to avoid autoubiquitination, including protection by partner or substrate binding, preventative modifications, and deubiquitinating enzyme reversal of ubiquitination. Here we describe another adaptation for E3 self-protection discovered while exploring San1, which ubiquitinates misfolded nuclear proteins in yeast for proteasomal degradation. San1 is highly disordered in its substrate-binding regions N- and C-terminal to its RING domain. In cis autoubiquitination could occur if these flexible regions come in proximity to the E2. San1 prevents this by containing no lysines in its disordered regions; thus the canonical residue used for ubiquitin attachment has been selectively eliminated. San1's target substrates have lost their native structures and expose hydrophobicity. To avoid in trans autoubiquitination, San1 possesses little concentrated hydrophobicity in its disordered regions, and thus the that feature San1 recognizes in misfolded substrates has also been selectively eliminated. Overall the presence of key residues in San1 have been evolutionarily minimized to avoid self-destruction either in cis or in trans. Our work expands the ways in which E3s protect themselves from autoubiquitination.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, N.I.H., Extramural
Authors
Fredrickson EK, Candadai SV, Tam CH, Gardner RG
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference