Reference: Ewald JC, et al. (2013) The integrated response of primary metabolites to gene deletions and the environment. Mol Biosyst 9(3):440-6

Reference Help

Abstract

Intracellular metabolites arise from the molecular integration of genomic and environmental factors that jointly determine metabolic activity. However, it is not clear how the interplay of genotype, nutrients, growth, and fluxes affect metabolite concentrations globally. Here we used quantitative metabolomics to assess the combined effect of environment and genotype on the metabolite composition of a yeast cell. We analyzed a panel of 34 yeast single-enzyme knockout mutants grown on three archetypical carbon sources, generating a dataset of 400 unique metabolome samples. The different carbon sources globally affected the concentrations of intermediates, both directly, by changing the thermodynamic potentials (Delta(r)G) as a result of the substrate influx, and indirectly, by cellular regulation. In contrast, enzyme deletion elicited only local accumulation of the metabolic substrate immediately upstream of the lesion. Key biosynthetic precursors and cofactors were generally robust under all tested perturbations in spite of changes in fluxes and growth rate.

Reference Type
Journal Article
Authors
Ewald JC, Matt T, Zamboni N
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference