Take our Survey

Reference: Haimovich G, et al. (2013) The fate of the messenger is pre-determined: a new model for regulation of gene expression. Biochim Biophys Acta 1829(6-7):643-53

Reference Help

Abstract


Recent years have seen a rise in publications demonstrating coupling between transcription and mRNA decay. This coupling most often accompanies cellular processes that involve transitions in gene expression patterns, for example during mitotic division and cellular differentiation and in response to cellular stress. Transcription can affect the mRNA fate by multiple mechanisms. The most novel finding is the process of co-transcriptional imprinting of mRNAs with proteins, which in turn regulate cytoplasmic mRNA stability. Transcription therefore is not only a catalyst of mRNA synthesis but also provides a platform that enables imprinting, which coordinates between transcription and mRNA decay. Here we present an overview of the literature, which provides the evidence of coupling between transcription and decay, review the mechanisms and regulators by which the two processes are coupled, discuss why such coupling is beneficial and present a new model for regulation of gene expression. This article is part of a Special Issue entitled: RNA Decay mechanisms.

Reference Type
Journal Article | Review | Research Support, Non-U.S. Gov't | Research Support, N.I.H., Extramural
Authors
Haimovich G, Choder M, Singer RH, Trcek T
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference