Reference: Arhzaouy K and Ramezani-Rad M (2012) Nuclear Import of UBL-Domain Protein Mdy2 Is Required for Heat-Induced Stress Response in Saccharomyces cerevisiae. PLoS One 7(12):e52956

Reference Help

Abstract


Ubiquitin (Ub) and ubiquitin-like (UBL) proteins regulate a diverse array of cellular pathways through covalent as well as non-covalent interactions with target proteins. Yeast protein Mdy2 (Get5) and its human homolog GdX (Ubl4a) belong to the class of UBL proteins which do not form conjugates with other proteins. Mdy2 is required for cell survival under heat stress and for efficient mating. As part of a complex with Sgt2 and Get4 it has been implicated in the biogenesis of tail-anchored proteins. Interestingly, in response to heat stress, Mdy2 protein that is predominantly localized in the nucleus co-localized with poly(A)-binding protein Pab1 to cytoplasmic stress granules suggesting that nucleocytoplasmic shuttling is of functional importance. Here we investigate the nuclear import of Mdy2, a process that is independent of the Get4/Sgt2 complex but required for stress response. Nuclear import is mediated by an N-terminal nuclear localization signal (NLS) and this process is essential for the heat stress response. In contrast, cells expressing Mdy2 lacking a nuclear export signal (NES) behave like wild type. Importantly, both Mdy2 and Mdy2-DeltaNES, but not Mdy2-DeltaNLS, physically interact with Pab1 and this interaction correlates with the accumulation in cytoplasmic stress granules. Thus, the nuclear history of the UBL Mdy2 appears to be essential for its function in cytoplasmic stress granules during the rapid cellular response to heat stress.

Reference Type
Journal Article
Authors
Arhzaouy K, Ramezani-Rad M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference