Take our Survey

Reference: Lobas AA, et al. (2013) Combination of Edman degradation of peptides with liquid chromatography/mass spectrometry workflow for peptide identification in bottom-up proteomics. Rapid Commun Mass Spectrom 27(3):391-400

Reference Help

Abstract


RATIONALE: High-throughput methods of proteomics are essential for identification of proteins in a cell or tissue under certain conditions. Most of these methods require tandem mass spectrometry (MS/MS). A multidimensional approach including predictive chromatography and partial chemical degradation could be a valuable alternative and/or addition to MS/MS. METHODS: In the proposed strategy peptides are identified in a three-dimensional (3D) search space consisting of retention time (RT), mass, and reduced mass after one-step partial Edman degradation. The strategy was evaluated in silico for two databases: baker's yeast and human proteins. Rates of unambiguous identifications were estimated for mass accuracies from 0.001 to 0.05 Da and RT prediction accuracies from 0.1 to 5 min. Rates of Edman reactions were measured for test peptides. RESULTS: A 3D description of proteolytic peptides allowing unambiguous identification without employing MS/MS of up to 95% and 80% of tryptic peptides from the yeast and human proteomes, respectively, was considered. Further extension of the search space to a four-dimensional one by incorporating the second N-terminal amino acid residue as the fourth dimension was also considered and was shown to result in up to 90% of human peptides being identified unambiguously. CONCLUSIONS: The proposed 3D search space can be a useful alternative to MS/MS-based peptide identification approach. Experimental implementations of the proposed method within the on-line liquid chromatography/mass spectrometry (LC/MS) and off-line matrix-assisted laser desorption/ionization (MALDI) workflows are in progress. Copyright (c) 2012 John Wiley & Sons, Ltd.CI - Copyright (c) 2012 John Wiley & Sons, Ltd.

Reference Type
Journal Article
Authors
Lobas AA, Verenchikov AN, Goloborodko AA, Levitsky LI, Gorshkov MV
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference